SAINT-GOBAIN ISOLAMENTO TERMOACUSTICO IMPERMEABILIZZAZIONE

NAPOLI 01 APRILE 2017

AGENDA

ISOLAMENTO TERMOACUSTICO IMPERMEABILIZZAZIONE

SOLUZIONI ISOVER E BITUVER PER LA RISTRUTTURAZIONE E LE NUOVE COSTRUZIONI

SAINT-GOBAIN PPC ATTIVITÀ ISOVER

Saint Gobain PPC, attività Isover, grazie ai due stabilimenti italiani siti a Vidalengo di Caravaggio (BG) e Chieti, propone sul mercato prodotti per l'isolamento termico e acustico e l'impermeabilizzazione sia in ambito edilizio che industriale

Vidalengo Plant

Chieti Plant

ARIA NUOVA NEL MONDO DELL'ISOLAMENTO

SEGMENTAZIONE DI GAMMA

Un'offerta, segmentata in 2 diverse gamme per altrettante applicazioni:

ESTERNI

4

INTERNI

Pe

(Roofine) Alta densità e resistenza a compressione Tetti piani e a falda, ETICS *(Arlanda)* Basso lambda (proprietà termoisolanti) **Tetti piani e a falda, facciate ventilate**

Performance termoacustiche

(Arlanda)

Involucro, tramezzi, pavimenti, controsoffitti

- Una elevata percentuale di materie prime riciclate e rinnovabili: sabbia e vetro
- Legante a base di materie
- Basso impatto ambientale durante l'intero ciclo di vita

- Dal caldo
- Dal freddo
- Dal rumore
- Dal fuoco
- Il nuovo legante a base di materie prime organiche e rinnovabili, brevetto esclusivo di SAINT-GOBAIN, rende Isover 4+ un materiale isolante che rispetta le più stringenti normative di legge e volontarie in ambito europeo relative alla qualità dell'aria indoor.

UNA RIVOLUZIONE COMUNICATA ATTRAVERSO UN NUOVO COLORE...

MADE IN ITALY

Se è fatto in Italia, allora è migliore.

Fatto in Italia.

Meglio fatto in Italia che all'estero.

COME PRODUCIAMO LA LANA DI VETRO :

POLIMERIZZAZIONE

GLI ISOLANTI SAINT-GOBAIN ISOVER... ...NON SOLO LANA DI VETRO...!

MULTIMATERIAL APPROACH

Isover e Bituver il giusto isolamento per tutte le applicazioni

LANA DI VETRO – LANA DI ROCCIA

Fonte: CRIR confronto della struttura fibrosa dei due materiali

ISOLAMENTO SOTTOTETTI FELTRO IN LANA DI VETRO ISOVER IBR

COPERTURE A FALDA

sottotetto non abitabile

COPERTURE A FALDA

isolate all'intradosso

CARATTERISTICHE TECNICHE

Feltri in Iana di vetro. L'IBR K 4+ è rivestito su una faccia con carta kraft bitumata. L'IBR N 4+ è nudo. Larghezza: 1,00 o 1,20 m Spessori: da 50 a 200 mm Densità p [kg/m³]: **12** Conduttività termica a 10°C λ_{D} [W/(m.K)]: **0,040** Fattore di resistenza alla diffusione del vapore µ: 1 (versione nuda) o 3.000 (versione con carta kraft)

Reazione al fuoco: Euroclasse A1 (versione nuda) o Euroclasse F (versione con carta kraft)

ISOLAMENTO TETTI IN LEGNO CARATTERISTICHE E CONFRONTI DEGLI ISOLANTI

CARATTERISTICHE TECNICHE

CARATTERISTICHE TECNICHE COMUNI

Isolamento Termico

Isolamento Acustico

Traspirabilità

Idrorepellenza

Resistenza alla compressione

CARATTERISTICHE TECNICHE DIFFERENTI

LdR A1

Classe di reazione al fuoco

LdV A2, s1,d0

lana di roccia

Resistenza al carico puntuale

ISOLAMENTO TERMICO

SOLUZIONI A CONFRONTO

Predimensionamento con spessori 80 + 60 mm

	Conduttività W/m.K	Densità Kg/m³	U W/m².K	Yie W/m².K	Sfasamento h
Isover vetro CLIMABAC G3	0.037	80	0.23	0.20	4.21
Isover vetro SUPERBAC N	0.037	97	0.23	0.19	4.68
Isover roccia R	0.037	120	0.23	0.18	5.29
Isover roccia S	0.039	150	0.24	0.17	5.87

LANA DI VETRO ISOVER CLIMABAC G3 sp. 140 mm

CALCOLO DELLA TRASMITTANZA NORMALE

Caratteristiche della struttura												
Ti [°C]	Te [U.R.(i) [ዓ	/0]	U.I	R.(e) [%	0]	Vento [m/s]				
20	0, [,]	65				36		1,2				
Descrizione materiale	e D	S	λ_d	m	λ	R	dT	Tf	μ	DS	СТ	
Aria ambiente								20				
Strato liminare interno						0,1	0,5	19,5				
Abete-flusso perpendicolare		0 25	0,12	0	0,12	0,21	0,3	19,2	60	11,25	2,7	
Barriera al vapore intelligente VARIO 400		0 0,2			2857,14 3	0	0	19,2	25000	0,08	1,6	
Pannello ISOVER CLIMABAC G3		0 80	0,037	0	0,037	2,16	3,6	15,7	1	6,4	1,03	
Pannello ISOVER CLIMABAC G3	8	0 60	0,037	0	0,037	1,62	2,7	13	1	4,8	1,03	
Telo ISOVER SYNTO DEFENSE	20	0 0,75			10000	0	0	13	36	0,15	1	
Intercapedine aria		1 50	0,35	0	0,35	0,14	0,2	12,7	1	0,05	1	
Tegola	130	0 10	0,26	0	0,26	0,04	0,1	12,7	10000	13	0,88	
Strato liminare esterno						0,04	0,2	0,4				
			r.Tot	4,31	,31 Massa 35,73							
Trasmittanza te calcolo della sez	[W	/m²	·K]	0,232								

SAINT-GOBAL

LANA DI VETRO ISOVER SUPERBAC N ROOFINE® G3 sp. 140 mm

CALCOLO DELLA TRASMITTANZA NORMALE

			Car	atteris	tiche de	ella stru	ttura					
Ti [°C] Te [°C]				U.R.(i) [%	6]	U	. R.(e) [%	»]	Vento [m/s]			
20		0,4			65			36			1,2	
Descrizione materiale		D	S	λ_{d}	m	λ	R	dТ	Tf	μ	DS	СТ
Aria ambiente									20			
Strato liminare interno							0,1	0,5	19,5			
Abete-flusso perpendicolare		450	25	0,12	0	0,12	0,21	0,3	19,2	60	11,25	2,7
Barriera al vapore intelligente VARIO		400	0,2			2857,143	0	0	19,2	25000	0,08	1,6
Pannello ISOVER SUPERBAC N Roo		97	80	0,037	0	0,037	2,16	3,6	15,7	1	7,76	1,03
Pannello ISOVER SUPERBAC N Roo		97	60	0,037	0	0,037	1,62	2,7	13	1	5,82	1,03
Telo ISOVER SYNTO DEFENSE		200	0,75			10000	0	0	13	36	0,15	1
Intercapedine aria		1	50	0,35	0	0,35	0,14	0,2	12,7	1	0,05	1
Tegola		1300	10	0,26	0	0,26	0,04	0,1	12,7	10000	13	0,88
Strato liminare esterno							0,04	0,2	0,4			
		s.Tot	225,95			r.Tot	4,31		Ma	ssa	38,	11
Trasmittanza te della se	orica zione	di ca corre	Icolo ente:	[W]	/m²	K]			0,2	32		

LANA DI ROCCIA ISOVER R sp. 140 mm

CALCOLO DELLA TRASMITTANZA NORMALE

		Cara	atterist	iche de	ella stru	ittura						
Ti [°C]	Ti [°C] Te [°C]			U.R.(i) [%]			R.(e) [%	6]	Vento [m/s]			
20	0,4	65				36		1,2				
Descrizione materiale	D	s	λ _d	m	λ	R	dT	Tf	μ	DS	СТ	
Aria ambiente								20				
Strato liminare interno						0,1	0,5	19,5				
Abete-flusso perpendicolare	450	25	0,12	0	0,12	0,21	0,3	19,2	60	11,25	2,7	
Barriera al vapore intelligente VARIO	400	0,2			2857,14 3	0	0	19,2	25000	0,08	1,6	
Isover R lana di roccia	120	80	0,037	0	0,037	2,16	3,6	15,7	1	9,6	1,03	
Isover R lana di roccia	120	60	0,037	0	0,037	1,62	2,7	13	1	7,2	1,03	
Telo ISOVER SYNTO DEFENSE	200	0,75			10000	0	0	13	36	0,15	1	
Intercapedine aria	1	50	0,35	0	0,35	0,14	0,2	12,7	1	0,05	1	
Tegola	1300	10	0,26	0	0,26	0,04	0,1	12,7	10000	13	0,88	
Strato liminare esterno						0,04	0,2	0,4				
s.Tot 225,95				r.Tot			Massa 41,33					
Trasmittanza teorica di calcolo della sezione				[W/m²·K]			0,232					

LANA DI ROCCIA ISOVER S sp. 140 mm

CALCOLO DELLA TRASMITTANZA NORMALE

			Cara	tterist	iche de	lla stru	ttura					
Ti [°C]	Ti [°C] Te [°C] 20 0,4				U.R.(i) [%]			U.R.(e) [º	%]	Vento [m/s]		
20					65		36			1,2		
Descrizione materiale		D	s	λ_{d}	m	λ	R	dT	Tf	μ	DS	СТ
Aria ambiente									20			
Strato liminare interno							0,1	0,5	19,5			
Abete-flusso perpendicolare		450	25	0,12	0	0,12	0,21	0,4	19,2	60	11,25	2,7
Barriera al vapore intelligente VARIO		400	0,2			2857,14 3	0	0	19,2	25000	0,08	1,6
ISOVER S		150	80	0,039	0	0,039	2,05	3,6	15,7	1	12	1,03
ISOVER S		150	60	0,039	0	0,039	1,54	2,7	13	1	9	1,03
Telo ISOVER SYNTO DEFENSE		200	0,75			10000	0	0	13	36	0,15	1
Intercapedine aria		1	50	0,35	0	0,35	0,14	0,2	12,7	1	0,05	1
Tegola		1300	10	0,26	0	0,26	0,04	0,1	12,7	10000	13	0,88
Strato liminare esterno							0,04	0,2	0,4			
s.Tot 225,95					r.Tot			4,12 Massa 45,53				
Trasmittanza teorica di calcolo della sezione corrente:				[W/m ² ·K] 0,243								

SAINT-GOBA

ISOLAMENTO ACUSTICO

IN COSA SONO DIFFERENTI?

Soluzione 1 (ClimaBac G3)

Soluzione 2 (ClimaBac G3)

IN COSA SONO DIFFERENTI?

St. Sta Soluzione 3 (Superbac Roofine N) Soluzione 4 (E60S)

Soluzione 5 (E60S) IS

PANNELLO ISOLANTE ISOVER SUPERBAC N ROOFINE

CARATTERISTICHE TECNICHE

Pannello ad alta densità. Dimensioni	· 1.00 x 1.20 m
	. 1,00 X 1,20 m
Spessori	: 50-60-80-100-120 mm
Densità ρ [kg/m ³]	: 97
Conduttività termica a 10°C λ_D	[W/(m.K)] :0,037
Costante di attenuazione acusti	ca CA : 115 dB/m
Resistenza a compressione per	deformazione del 10%

PANNELLO ISOLANTE ISOVER CLIMABAC N

CARATTERISTICHE TECNICHE

Pannello ad alta densità. Dimensioni

Spessori

: 1,00 x 1,20 m

: 50-60-80-100-120 mm

Densità ρ [kg/m³] : 80

Conduttività termica a 10°C λ_D [W/(m.K)] : 0,037

Costante di attenuazione acustica CA : 115 dB/m

Resistenza a compressione per deformazione del 10% : 40 kPa

PANNELLO ISOLANTE ISOVER E60S G3

CARATTERISTICHE TECNICHE

Pannello in Iana di vetro G3, nudo Dimensioni: 0,60 x 1,20 m Spessori: da 40 a 60 mm Densità p [kg/m³]: **30** Conduttività termica a 10°C $\lambda_{\rm D}$ [W/(m.K)]: **0,032** Fattore di resistenza alla diffusione del vapore µ: 1 Costante di attenuazione acustica: 120 dB/m Reazione al fuoco: Euroclasse A1

COPERTURE PIANE IMPERMEABILIZZAZIONE E ISOLAMENTO

SISTEMI DI IMPERMEABILIZZAZIONE A DOPPIO STRATO

MEMBRANE BITUME-POLIMERO

ESPERIENZA DI CANTIERE

POSA DEL PRIMER – BITUVER ECOPRIVER

BITUVER ECOPRIVER

CARATTERISTICHE TECNICHE

Primer bituminoso per favorire l'adesione delle membrane bituminose a supporto, eliminando asperità e porosità eccessive

STRATO DI DIFFUSIONE AL VAPORE – BITUVER V12 FORATO

BITUVER BITUMAT V12 FORATO

CARATTERISTICHE TECNICHE

Membrana bituminosa armata con velo di vetro forato

Impieghi prevalenti:

- gestione del vapore nei tetti piani
- posa in semi-indipendenza di membrane nei tetti piani

Dimensioni: 1 x 20 m

POSA DELLA BARRIERA AL VAPORE – BITUVER ALUVAPOR TENDER

BITUVER ALUVAPOR TENDER

CARATTERISTICHE TECNICHE

Membrana costituita da una mescola elastoplastomerica e una particolare armatura composta da una lamina di alluminio goffrato.

Impieghi prevalenti:

- barriera al vapore
- sottostrato
- strato intermedio

Dimensioni: 1 x 10 m

PRIMO STRATO DI ISOLANTE – ISOVER SUPERBAC ROOFINE® N G3

SECONDO STRATO DI ISOLANTE – ISOVER SUPERBAC ROOFINE® G3

POSA DEL SECONDO PANNELLO

BITUVER BITUMASTIC

CARATTERISTICHE TECNICHE

Mastice bituminoso in emulsione acquosa

Impieghi prevalenti:

- fissaggi dei pannelli isolanti a superfici bituminose
- fissaggi tra pannelli (es., Isover SUPERBAC G3 ROOFINE)

POSA DEL PRIMO STRATO IMPERMEABILIZZANTE

BITUVER POLIMAT ANTIRADICE

CARATTERISTICHE TECNICHE

Membrana bitume-polimero con flessibilità a freddo –10°C con proprietà antiradice.

Impieghi prevalenti:

- coperture a giardino
- può essere impiegata come sottostrato su strutture interrate, muri contro terra e fondazioni

Dimensioni: 1 x 10 m

POSA DEL SECONDO STRATO IMPERMEABILIZZANTE

BITUVER POLIMAT MS TEX

CARATTERISTICHE TECNICHE

Membrana APP con flessibilità a freddo di –15°C. L'armatura è costituita da tessuto-non tessuto di poliestere rinforzato con fibre di vetro

Impieghi prevalenti:

- strato a finire
- sottostrato
- fondazioni

Dimensioni: 1 x 10 m

PANNELLO ISOLANTE ISOVER SUPERBAC ROOFINE

CARATTERISTICHE TECNICHE

Pannello ad alta densità. Una faccia è rivestita con uno **strato di bitume** a elevata grammatura armato con velo di vetro.

Dimensioni: 1,00 x 1,20 mSpessori: 50-60-80-100-120 mmDensità ρ [kg/m³]: 97Conduttività termica a 10°C λ_D [W/(m.K)] : 0,037Costante di attenuazione acustica CA : 115 dB/m

Resistenza a compressione per deformazione del 10% : 50 kPa

MEMBRANE AUTOPROTETTE CON LAMINA METALLICA

MEGAVER AL TF

Membrana impermeabile elastomerica ottenuta da compound a base di bitume distillato, modificato con polimeri elastomerici (SBS), rivestita da una lamina metallica di alluminio goffrato.

Prodotto	Sotto- strato	Strato a finire	Mono- strato	Controllo vapore	Antiradice	Fonda- zioni
MEGAVER AL TF		×				
Prodotto	Armatura			Peso/m ²	m ¹ /pallet	
A SECOND CONTRACTOR OF STREET, SECOND	Tessuto di vetro + Velo di vetro					444.00

Le membrane Megaver AL TF sono classificate "B_{ROOF} (t2)" su ogni tipo di sottostrato ed inclinazione, secondo la norma UNI EN 13501-5, nel rispetto della "Soluzione 3/a" della Circolare VV.F n.1324 del 07/02 "Guida per l'Installazione degli impianti fotovoltaici VV.F"

BROOF

MEGAVER CU

Membrana impermeabile elastomerica ottenuta da compound a base di bitume distillato, modificato con polimeri elastomerici (SBS), rivestita da una lamina metallica di rame puro goffrato.

Prodotto	Sotto- strato	Strato a finire	Mono- strato	Controllo vapore	Antiradice	Fonda- zioni
MEGAVER CU		х				
Prodotto	Armatura			Peso/m ²		/pallet
MEGAVER CU 4,5 KG TV	Tessuto di vetro + Velo di vetro			4,5 kg	1	230

MEMBRANE AUTOPROTETTE CON LAMINA METALLICA

MEMBRANE AUTOPROTETTE CON LAMINA METALLICA

Pendenza della copertura (%)	Orientamento posa delle membrane	Sovrapposizione d. texto membrane autoprotette metalliche			
	autoprotette metalliche	Fissaggi meccanici	Delaminazione testa lun- ghezza 150mm		
2 - 4	parallelo alla gronda	non obbligatori	obbligatoria, lunghezza		
4 - 20	parallelo alla pendenza della falda	non obbligatori	150mm		
> 20	parallelo alla pendenza della falda	prevedere n°4 fissaggi per ogni membrana	no		

Tipo membrana autoprotetta metallica	Strato di ventilazione tra isolante e membrana metallica	Installazione su isolanti			
		Ammessa / non ammessa	Tipologia dell'isolante		
MEGAVER CU	obbligatorio	ammessa	tutti		
MEGAVER AL	presente	ammessa	tutti		
	non presente	ammessa	solo lane minerali base vetro o rccia		
MEGAVER CALIFORNIA	presente / non presente	ammessa	tutti		

6

Ve SAINT-GOBA

COOL ROOF

CONTROLLO ESTIVO DELLE COPERTURE

Per <u>qualsiasi</u> intervento in copertura è obbligatoria la <u>verifica dell'efficacia, in</u> <u>termini di rapporto costi-benefici</u>, dell'utilizzo di:

Materiali a elevata riflettanza solare per le coperture (cool roof), assumendo per questi ultimi un valore di riflettanza solare non inferiore a:

- 0,65 nel caso di coperture piane
- 0,30 nel caso di copertura a falda

Tecnologie di climatizzazione passiva (es. ventilazione, coperture a verde).

Tali verifiche e valutazioni devono essere documentate nella relazione tecnica.

CONTROLLO ESTIVO DELLE COPERTURE:

Note:

- Tali verifiche e valutazioni devono essere puntualmente documentate nella relazione tecnica.
- Tali verifiche sono previste al fine di limitare i fabbisogni energetici per la climatizzazione estiva e di contenere la temperatura interna degli ambienti, nonché di limitare il surriscaldamento a scala urbana.

Indice di riflettanza

Estetica pregevole

Classe di resistenza agli incendi esterni

Facilità di posa

Impiego monostrato

Durabilità

76 / Presentation title

VANTAGGI PER L'UTENTE:

Riduzione della temperatura della superficie di copertura

- Riduzione dei costi per la climatizzazione estiva fino al 30%
- Migliore comfort abitativo, in particolare per l'ultimo piano
- Protezione delle strutture portanti dalle oscillazioni della temperatura giorno/notte e stagionali
- Aumento del rendimento dei moduli fotovoltaici posti in copertura
- Protezione dai raggi U.V. e allungamento notevole della vita dell'impermeabilizzazione

VANTAGGI PER L'AMBIENTE:

Riduzione dell'effetto isola di calore e, conseguentemente, della temperatura dell'ambiente circostante

♦ Riduzione del consumo di energia elettrica per la climatizzazione

Estetica pregevole

MEGAVER CALIFORNIA:

Altissima durabilità rispetto ad altre soluzioni riflettenti*

Soluzione estetica pregevole, altamente migliorativa rispetto alla finitura con membrane tradizionali

Classe di resistenza agli incendi esterni "BROOF(t2)" secondo la norma UNI EN 13501-5, nel rispetto della "Soluzione 3/a" della Circolare VV.F n.1324 del 07/02 "Guida per

I'Installazione degli impianti fotovoltaici VV.F" su ogni tipo di sottofondo, anche combustibile

PARETI PERIMETRALI

SOLUZIONE IN INTERCAPEDINE

CARATTERISTICHE TECNICHE

Pannello in lana di vetro adatto a molteplici applicazioni Dimensioni: 0,60 x 1,45 m Spessori: da 40 a 120 mm Densità ρ [kg/m³]: 20 Conduttività termica a 10°C λ_{D} [W/(m.K)]: 0,035 Fattore di resistenza alla diffusione del vapore µ: 1 (versione nuda) o 3.000 (versione con carta kraft) Resistività al flusso r (kPa s/m²): 13 Reazione al fuoco: Euroclasse A1 (versione nuda) o

Euroclasse F (versione con carta kraft)

SCHEMA APPLICATIVO

AKUSTRIP 12 - AKUSTRIP 20 - AKUSTRIP 33

AKUSTRIP 12 e AKUSTRIP 20: accessori per la desolidarizzazione verticale tra parete e pavimento.

AKUSTRIP 33: accessorio per la desolidarizzazione orizzontale, come banda di sormonto per pavimenti galleggianti.

Prodotto	Spessore	Dimensioni	bobine/pallet
AKUSTRIP 12	2,8	0,12 x 20	160
AKUSTRIP 20	2,8	0,20 x 20	100
AKUSTRIP 33	2,8	0,33 x 20	60
AKUSTRIP 33	2,8	0,33 x 20	60

AKUSTRIP:

Strisce di feltro ad alta grammatura con una faccia impregnata a saturazione parziale da una speciale miscela bituminosa rifinita con un tnt polipropilenico.

MUPAN K- MUPAN

Pareti perimetrali

Isolamento in intercapedine

Struttura in laterizi

Pareti di separazione - unità immobiliari differenti Isolamento in intercapedine Struttura in laterizi

ISOLANTE NEI CONTROSOFFITTI

GLI ERRORI DI POSA DA EVITARE NELLE PARETI

PARETI IN GESSO RIVESTITO ISOVER PAR 4 +

PANNELLO ARROTOLATO ISOVER PAR 4+

CARATTERISTICHE TECNICHE

Dimensioni	: 0,60 x 15,00 m (sp.45 mm)			
	: 0,60 x 10,00 m (sp.70 mm)			
	: 0,60 x 7,50 m (sp.	95 mm)		
Spessori	: 45-70-95 mm			
Densità ρ [kg/m³]	: 13 (45 mm) / 1	1,5 (70/95 mm)		
Conduttività termica a 10°C λ _D [W/(m.K)]:				
: 0,038 (45 mm) / 0,040 (70/95 mm)				
Fattore di resistenza alla diffusione del vapore $: \mu = 1$				
Resistività al fluss	o dell'aria [kPa.s/m²]	:7-6		
Reazione al fuoco	(Euroclasse)	: A1		
Emissione di form	aldeide	: ZERO		

VANTAGGI PRESTAZIONALI

- Reazione al fuoco del PAR \Rightarrow isolante incombustibile \Rightarrow Euroclasse di reazione al fuoco A1
- Miglioramento sostanziale del fonoisolamento ai rumori aerei e dell'isolamento termico

VANTAGGI APPLICATIVI

A parità di altre condizioni, il pannello arrotolato PAR 4+ è più veloce da posare rispetto ai pannelli rigidi in lana di roccia o lana di vetro

Il PAR è più facile da movimentare e occupa meno spazio in cantiere rispetto ai pannelli rigidi (tipo LdR)

Diverso volume a parità di metri quadrati di prodotto!

VANTAGGI APPLICATIVI

Data la sua lunghezza notevole, il pannello arrotolato PAR 4+ permette di ottimizzare e ridurre gli scarti in cantiere

ISOVER PAR Nuovo Residenziale

Sotto il Monte Giovanni XXIII (BG)

ISOVER PAR Nuovo Commerciale

Palmanova (UD)

ISOVER PAR Nuovo Commerciale

Palmanova (UD)

PARETI PERIMETRALI ISOVER CLIMA34 G3 ISOLAMENTO TERMO-ACUSTICO A CAPPOTTO

ISOVER CLIMA34 G3

PARETI PERIMETRALI - CAPPOTTO

struttura in laterizio

PARETI PERIMETRALI - CAPPOTTO

struttura in calcestruzzo aerato autoclavato

PARETI PERIMETRALI - CAPPOTTO

pareti perimetrali - cappotto

struttura in legno

ISOLAMENTO TERMICO

Conduttività termica: I = 0,034 W/mK

ISOLAMENTO ACUSTICO

SICUREZZA

Euroclasse:

s1-d0

Coeff. res. passaggio vapore: $\mu = 1$

TRASPIRABILITÀ

Stabilità dimensionale: < 1%

DURABILITÀ

IDROREPELLENZA

Assorbim. d'acqua a breve periodo WS: < 1 kg/mq

TEST E CERTIFICAZIONI

DAY (COLDINA)

Istituto per le Tecnologie della Costruzione Consiglio Nazionale delle Ricerche Via Lombarda 49 - 20098 San Gullano Milanese - Italy tel: +30-02-0606.1 - Telefac: +36-02-00260066 -mail info@to.orr t

Valutazione Tecnica Europea

Membro EOTA

ganisation Europäenne po

ETA 13/0329 del 15/12/15

DA RICORDARE ISOVER CLIMA34 G3...... COSA C'È DI NUOVO?

NB. L'unico pannello da cappotto in lana minerale con questa prestazione

CARATTERISTICHE TECNICHE

_	
	1999年 -
	15 H
	1210

Dimensioni:	0,60 x 1,20 m
Spessori:	40-50-60-80-100- 120-140-160-180-
	200 mm
Densità ρ [kg/m³]:	55
Conduttività termica a 10°C λ _D [W/(m.K)]:	0,034
Fattore di resistenza alla diffusione del vapore:	μ = 1
Resistenza a trazione parallela alle facce:	7,5 kPa
Resistenza a compressione per deformaz.del 10%	15 kPa
Reazione al fuoco (Euroclasse):	A2-s1,d0
Assorbimento all'acqua a breve periodo:	WS (< 1 kg/m2)

FONOISOLAMENTO AI RUMORI AEREI

- Il sistema cappotto è assimilabile ad un sistema a pelle resiliente (lo strato addizionale è incollato direttamente alla parete di base senza montanti o correnti)
- La lana di vetro realizza un collegamento meccanico tra due strutture rigide e svolge un ruolo di molla (riferimento al sistema "massa-molla-massa") smorzando l'energia sonora incidente grazie alla sua elasticità

- Rispetto alla prestazione acustica della parete di base R_{w0}, un cappotto in lana di vetro fornisce un miglioramento (incremento) dell'indice di fonoisolamento ΔR_w pari ad almeno 0,5 dB/cm
- Per alcuni materiali plastici (ad esempio, l'EPS standard) il valore di ΔR_w è nullo e in alcuni casi può diventare negativo.

FONOISOLAMENTO AI RUMORI AEREI RAPPORTI DI PROVA DELL'ISTITUTO GIORDANO N°325047

parete singola con mattoni alleggeriti 25 cm

+ ISOVER CLIMA34 G3

spessore CLIMA34 G3	parete senza cappotto R _ (dB)	parete con cappotto R (dB)	ΔR_{w}
90	54	FO 60	
00	54	00	+0

FONOISOLAMENTO AI RUMORI AEREI RAPPORTI DI PROVA DELL'ISTITUTO GIORDANO N°325048

parete doppia con mattoni forati 120+80 mm

+ ISOVER CLIMA34 G3

spessore CLIMA34 G3	parete senza cappotto	parete con cappotto	ΔR_{w}
(mm)	R _{w0} (dB)	R _w (dB)	(dB)
80	55	59	+4

FONOISOLAMENTO AI RUMORI AEREI RAPPORTI DI PROVA DELL'ISTITUTO GIORDANO N°325049

parete doppia con mattoni forati 120+80 mm

+ ISOVER CLIMA34 G3

spessore CLIMA34 G3	parete senza cappotto	parete con cappotto	ΔR_{w}
(mm)	R _{w0} (dB)	R _w (dB)	(dB)
80	55	57	+2

RESISTENZA ALL'IMPATTO

 La resistenza all'impatto del sistema cappotto viene condotta conformemente al punto 5.1.3.3.1 della norma europea ETAG 004

Si prevede l'impatto sulla superficie del cappotto di una sfera d'acciaio di massa 1 kg, in caduta da una quota di 1,02 m

RESISTENZA ALL'IMPATTO E' stato eseguito un confronto della resistenza all'impatto di due sistemi a cappotto

identici ad eccezione della tipologia del pannello isolante

CAPPOTTO IN EPS CON SCARSA STABILITA' DIMENSIONALE

SISTEMA "A CAPPOTTO" CON PANNELLI ISOVER CLIMA34

VANTAGGI APPLICATIVI

- Facilità di taglio dei pannelli rispetto ad altri materiali isolanti. Risulta più agevole contornare le discontinuità presenti (travi, spigoli, sporgenze) assicurando un'ottima tenuta termo-acustica
- L'elasticità dei pannelli facilita l'adattamento alle irregolarità superficiali della parete di base
- Il pannello è più leggero di altre tipologie isolanti come la fibra di legno o la lana di roccia. Ciò è particolarmente importante nel caso della posa di pannelli d'alto spessore
- L'elasticità dei pannelli facilita l'adattamento alle superfici curve.

Cogoleto (GE)

MULTI-COMFORT HOUSE

con CAPP8 G3

Sp. 140 + 120 mm 160 m²

Nuovo Residenziale

Milano (MI)

CAPP8 90 mm

5.000 m²

Torre Residenziale

Altezza 80 m

Lodi

CAPP8 G3 100 mm

11.000 m²

Ristrutturazione Ospedale

REFERENZE ISOVER

Buchberg

CAPP8 G3 160 mm 400 m², struttura in legno Nuovo Albergo

REFERENZE ISOVER CLIMA34 G3

Casa in legno - Santa Vittoria d'Alba (CN)

REFERENZE ISOVER CLIMA34 G3

Casa in legno - Santa Vittoria d'Alba (CN)

SCHEMA APPLICATIVO (1/7)

PROFILI DI PARTENZA

Posare un profilato pressopiegato in lega di alluminio, fissato per mezzo di tasselli ad espansione, con funzione di allineamento e contenimento del sistema isolante. Allo scopo di consentire la fuoriuscita di eventuali infiltrazioni d'acqua o della condensa interstiziale, utilizzare un profilo di base con il lato inferiore forato.

SCHEMA APPLICATIVO (2/7) INCOLLAGGIO DEI PANNELLI

Si utilizza un adesivo cementizio (o similare) steso sui bordi e in 2-3 punti al centro, avendo cura di non sporcare i fianchi dei pannelli con adesivo in eccesso.

I pannelli vanno installati con la faccia marcata (rigata) orientata verso l'esterno.

SCHEMA APPLICATIVO (3/7) FISSAGGIO MECCANICO CON TASSELLI AD ESPANSIONE

Numero indicativo 4 a pannello: uno in corrispondenza delle intersezioni tra pannelli e due aggiuntivi al centro (il numero esatto varia da progetto a progetto e dipende dalla massima depressione del vento e dal materiale costituente la parete di base).

SCHEMA APPLICATIVO (4/7)

FISSAGGIO MECCANICO CON TASSELLI AD ESPANSIONE

- Per spessori dell'isolante fino a 120 mm possono essere impiegati indistintamente tasselli ad espansione con <u>CHIODO</u> o a <u>VITE</u>.
- Per spessori dell'isolante superiori a 120 mm si consiglia di utilizzare tasselli ad espansione a <u>VITE</u>, che garantiscono un ancoraggio più graduale e preciso.

SCHEMA APPLICATIVO (5/7)

RASATURA E RETE D'ARMATURA

Prima mano di rasante traspirante cementizio (o similare) annegando la rete. Seconda mano di rasante dopo asciugatura della prima mano.

Rete di rinforzo: 150-160 g/m² – alcaliresistente – dimensioni indicative maglia 4x4 mm

SCHEMA APPLICATIVO (6/7)

RASATURA E RETE D'ARMATURA – PUNTI SINGOLARI

- Si consiglia di annegare ulteriori pezzi di rete con inclinazione 45° in corrispondenza degli spigoli
- Procedere alla rettifica degli angoli applicando i profili paraspigolo.

SCHEMA APPLICATIVO (7/7) FINITURA (RIVESTIMENTO)

- Prevedere un rivestimento in pasta traspirante e idrorepellente, di tipo silossanico
- Si suggerisce di impiegare rivestimenti in versione risanante antimuffa ed antialga.

ERRORI APPLICATIVI E CONSEGUENZE

INCOLLAGGIO NON CONFORME INSUFFICIENTE TROPPO RAPIDA

NUMERO DI TASSELLI INSUFFICIENTE

RETE SUPERFICIALE

ASSENZA DELLA RETE DI ARMATURA NEGLI ANGOLI DELLE APERTURE

IL PERICOLO DI UNA POSA ERRATA

Claudio LEO Technical Service Engineer Isover Email:claudio.leo@saint-gobain.com

